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Abstract— The phenomenon of using control actions to com-
municate is called signaling. Signaling is often beneficial in
decentralized control problems with imperfect communication
between agents. Seemingly simple control problems with sig-
naling are often mathematically challenging. Humans, however,
lack high-speed communication channels and routinely employ
signaling strategies during cooperative movements. This paper
presents a computationally tractable two-player problem that
models several salient features of signaling problems arising
in both decentralized control and human experiments. The
problem consists of a signaler that reaches towards one of two
possible targets, and an observer that decides on the target
location based on noisy measurements of the movement. The
signaler trades off control costs, such as energy, with informa-
tiveness for the observer. Two variants, the unambiguous case
and the ambiguous case, are presented. In the unambiguous
case, the signaler makes movements that are easy to distinguish,
while in the ambiguous case, the signaler maximizes similarity
of the movements. An approximation method for nonlinear
systems is presented. When applied to a three-link arm model,
the control scheme reproduces qualitative signaling phenomena
observed in human reaching experiments.

I. INTRODUCTION

Signaling phenomena, in which agents communicate with
control actions, arise in decentralized control problems with
imperfect communication channels. Signaling has been stud-
ied theoretically in decentralized control since the 1960s. Ex-
perimentally, signaling has been demonstrated in numerous
cooperative movement experiments. This paper introduces
a problem that is intended to form a bridge between the
theoretical studies of signaling and phenomena observed in
biological experiments.

A. Related Work

In decentralized control, the earliest example of signaling
phenomena iss Witsenhausen’s counterexample [1]. In this
problem, one agent utilizes control actions to improve a
partner’s state estimate of a plant. To date, an optimal
solution to Witsenhausen’s problem is unknown and sub-
sequent work has shown that problems with signaling can
be computationally intractable [2], [3]. Recent work on
signaling has identified control problems with signaling that
can be solved computationally [4], [5]. See [6] for a modern
treatment of signaling in control.

Humans lack perfect communication channels and so
signaling with control actions would is useful for cooper-
ation. Indeed, signaling phenomena, termed “coordination

smoothers”, have been observed in numerous human co-
operation experiments [7]. Relevant to this paper, during
cooperative target reaching tasks, humans exaggerate their
movements in order to help their partners infer the location
of the reaching target [8], [9].

Work on human-robot interaction has utilized automatic
gesture recognition for decades [10], [11]. Recent results in
robotics, [12], [13], approach similarly motivated problems
as this paper and obtain qualitatively similar results, though
the modeling and optimization techniques are different. Other
recent studies have sought to enhance robotic cooperation by
incorporating estimates of human intentions from movement
data [14], [15]. Furthermore, in turn-taking tasks, such as
hand-overs, human signaling phenomena have been exploited
to improve control timing [16], [17]

B. Organization

The paper is organized as follows. The main coordination
problem, called the unambiguous linear quadratic regulator
is defined in Section II, and its solution is given in Section III.
A related problem, called the ambiguous linear quadratic
regulator is described in Subsection IV-A, anIn Subsec-
tion IV-B, the methods are extended to nonlinear systems.
The method is applied to a three-link arm model, and
qualitative features from a cooperative reaching experiment
in [8] are reproduced. Conclusions are given in Section V.

II. THE UNAMBIGUOUS LINEAR QUADRATIC
REGULATOR

A. Notation

For a sequence of vectors x0, x1, . . . , xN , define x0:N by

x0:N =
[
xT
0 xT

1 · · · xT
N

]T
.

The probability of event A is denoted by P(A). The
expected value of a random variable, X is denoted by E[X].
The indicator function is denoted by χ.

The Euclidean norm is denoted by ‖ · ‖, so that ‖x‖2 =
xTx. The determinant of a matrix M is denoted by |M |.
The notation M � 0 denotes that M is positive semidefinite,
while M � 0 denotes that M is positive definite. The image
of matrix M is denoted by im(M). The pseudo-inverse of a
matrix is denoted by M+.

2016 American Control Conference (ACC)
Boston Marriott Copley Place
July 6-8, 2016. Boston, MA, USA

978-1-4673-8682-1/$31.00 ©2016 AACC 1111

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 15,2023 at 04:50:20 UTC from IEEE Xplore.  Restrictions apply. 



B. A Two-Player Control and Decision Problem
This paper focuses on a two-player control and decision

problem. The problem is designed to model several of
the salient features from decentralized control and human
cooperation experiments, discussed in Section I-A, while
remaining mathematically tractable. The sequence of the
problem is described as follows (see also Fig. 1):

1) The signaler begins at initial state x̂.
2) Based on the value of a binary random variable b ∈

{0, 1}, drawn uniformly, the signaler moves towards
one of two possible targets τ0 or τ1. This results in a
state trajectory, x0

0:N or x1
0:N , depending on the value

of b ∈ {0, 1}. We will assume that trajectories are
generated by affine dynamics xb

k, subject to a quadratic
cost bound.

3) The observer, who is not given the value of b, collects
noise-corrupted measurements of the movement:

z = yb + w, where (1a)

yb =


C0x

b
0

C1x
b
1

...
CNxb

N

 , w =


w0

w1

...
wN

 . (1b)

Here wi are independent Gaussian random variables
with mean 0 and covariance Σi.

4) The observer decides which target, τ0 or τ1, the sig-
naler was reaching, based on the noisy measurements.
The decision is denoted by f(z). The observer’s goal
is to choose f so that it maximizes the probability of
making the correct decision, P(f(z) = b).

Remark 1: It is assumed that the signaler and observer
both know the possible strategies that the signaler can
generate, x0

0:N and x1
0:N . However, since the observer does

not know b, it only measures the trajectories noisily, it does
not know which trajectory the signaler used.

To complete the description of the problem, we must
explain how the trajectories, x0

0:N and x1
0:N are generated.

For b = 0, 1, the movement follows affine dynamics:

xb
k+1 = Ab

kx
b
k +Bb

ku
b
k + gbk, xb

0 = x̂, (2)

To ensure that the signaler makes “reasonable” move-
ments, the trajectories must satisfy a quadratic cost bound:

E

[
N∑

k=0

(
xb
k

T
Qb

kx
b
k + 2hb

k

T
xb
k + ub

k

T
Rb

ku
b
k + 2`bk

T
ub
k

)]
≤ c. (3)

Explanation of the dynamics and cost bound: In (2), the
superscript b is used to denote which target τ b the signaler
is attempting to reach and should not be interpreted as an
exponent. For the basic linear quadratic theory, there is little
loss of generality in assuming that time invariant dynamics,
which are independent of the bit value b. In Subsection IV-B,
however, we extend to the methods to nonlinear systems with
dynamics of the form

xb
k+1 = F (xb

k, u
b
k), xb

0 = x̂, (4)

and apply the iterative approximation scheme from [18]. In
this case, (4) is linearized around trajectories (xb

0:N , ub
0:N ),

resulting in approximate dynamics of the form (2). In par-
ticular, the resulting matrices will be time varying, and will
depend on which trajectory, (x0

0:N , u0
0:N ) or (x1

0:N , u1
0:N ),

was used for linearization. Similarly, the general form of the
costs bounds in (3) is required for quadratic approximations
of non-quadratic cost bounds.

For convexity, it will be assumed that Rb
k is positive

definite and Qb
k is positive semidefinite. It will be assumed

that (3) is strictly feasible.
The control action of the signaler has two roles. The first

role is to regulate movement, as specified in (3), while the
second role is to increase the probability that the observer
makes the correct decision. The secondary role of improving
the observer’s decision probability can be interpreted as using
control actions to transmit a single bit, b. Mathematically, the
joint control and decision problem is modeled by the follow-
ing optimization problem, which we call the “unambiguous
linear quadratic regulator”:

max
f,u

P(f(z) = b) (5a)

s.t. xi
k+1 = Ai

kx
i
k +Bi

ku
i
k + gik, i = 0, 1 (5b)

xi
0 = x̂, i = 0, 1 (5c)

E
[∑N

k=0

(
xb
k

T
Qb

kx
b
l + 2hb

k

T
xb
k

+ub
k

T
Rb

ku
b
k + 2`bk

T
ub
k

)]
≤ c

(5d)

The main result of this paper, Theorem 1 in Section III-A,
enables the solution of (5) based on iteratively solving linear
quadratic regulator problems.

Remark 2: The term “unambiguous linear quadratic regu-
lator” is given because the signaler minimizes the ambiguity
of its trajectories, subject to a quadratic cost constraint.

Example 1: Consider the following special case of (2):

xb
k+1 = xb

k + 0.1ub
k, xb

0 = 0.

The targets are given x = ±1, so that τ b = (−1)b. The
constraint on the signaling strategy, (3), is given by

E

[
N∑

k=0

0.01(ub
k)

2 + (xb
N − (−1)b)2

]
≤ c̃ (6)

The left of (6) can be minimized using a linear quadratic
regulator to give a minimal value of 0.182. Thus, in order
for (6) to be strictly feasible, c̃ must be greater than 0.182.

By varying the upper bound, c̃ > 0.182, the trade-
off between movement costs and observer accuracy can be
changed. In particular, as c̃ increases, the trajectories become
more exaggerated. See Fig. 1.

III. SOLUTION

This section presents the main result in Subsection III-A,
which shows that (5) problem is equivalent to a quadratic
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Fig. 1: Here, the signaler starts at x̂ = 0, and the targets
are given by x = ±1. The solid line depicts the movement
toward 1, while the dashed line depicts the movement toward
the other target, −1. The magenta circles depict the noisy
measurements which the observer uses to decide which target
the signaler was trying to reach. Both cases correspond to
optimal trajectories for the system from Example 1, but with
different movement cost bound c̃ in (6). In 1a, c̃ = 0.2
and the observer can correctly decide which target is being
reached with probability 0.85. In 1b, c̃ = 4, the observer can
decide on the correct target with probability over 0.999.

maximin problem. Next, in Subsection III-B, a computational
method for computing the optimal solution to (5) is given.

A. Main Result

Define Σ by Σ = diag(Σ0,Σ1, . . . ,ΣN ). Then w is a
zero-mean Gaussian random variable with covariance Σ.

Say that z has dimension m. If the control strategies of
the signaler, ui

0:N , are fixed, then p(z, b) has a joint density
given by

p(z, b) = p(b)p(z|b) (7a)

=
1

2

1

(2π)
m
2 |Σ| 12

∫
Rm

exp

(
−1

2
(z − yb)TΣ−1(z − yb)

)
dz.

(7b)

For compact notation, set u =

[
u0
0:N

u1
0:N

]
.

The following theorem is the main result in the paper.
It gives a characterization of the optimal strategies of the
signaler and the observer.

Theorem 1: For any signaling strategy, the optimal ob-
server strategy is given by maximum likelihood decisions:

f∗(z) =

{
0 if p(z|0) ≥ p(z|1)
1 if p(z|1) > p(z|0).

(8)

A signaler strategy, u∗, is optimal if and only if it is
optimal for the following maximin problem:

max
λ≥0

min
u

−
∑N

k=0(x
1
k − x0

k)
TCT

kΣ
−1
k Ck(x

1
k − x0

k)

+λ
2

∑1
i=0

∑N
k=0

(
xi
k
T
Qi

kx
i
l + 2hi

k
T
xi
k

+ui
k
T
Ri

ku
i
k + 2`ik

T
ui
k

)
− λc.

(9a)

s.t. xi
k+1 = Ai

kx
i
k +Bi

ku
i
k + gik, i = 0, 1 (9b)

xi
0 = x̂, i = 0, 1 (9c)

Remark 3: Note that the maximum likelihood decision
strategy (8) can only be implemented if the signaler can eval-
uate the conditional distribution p(z|b). In order to evaluate
p(z|b), the noise-free measurement vectors y0 and y1 must
be known to the observer.

Proof of Theorem 1: Given data z, the observer’s goal
of deciding the value of the transmitted bit, b is a binary
hypothesis testing problem. When p(b = 0) = p(b = 1) = 1

2 ,
a classical result on hypothesis testing, [19], shows that the
minimum error probability is given by (8).

Given any y0 and y1 vectors, an argument from Gaussian
detection theory, [20], shows that the probability that the
observer, using (8), makes the correct decision is given by:

P(f∗(z) = b) =
1√
2π

∫ ∆

−∞
e−

t2

2 dt, (10)

where ∆ ≥ 0 is defined by

(2∆)2 =
(
y1 − y0

)T
Σ−1

(
y1 − y0

)
=

N∑
k=0

(x1
k − x0

k)
TCT

kΣ
−1
k Ck(x

1
k − x0

k). (11)

It follows that maximizing the probability of correctness
is equivalent to maximizing (2∆)2. Since the equality con-
straints, (5b) and (5c), are affine, xi

k can be computed as
affine functions of the input u and the fixed parameters x̂
and gik. Let xi

k(u) denote the resulting affine functions of
u. Eliminating the equality constraints, combined with (11),
implies that (9) is equivalent to the following problem:

min
u

−
N∑

k=0

(x1
k(u)− x0

k(u))
TCT

kΣ
−1
k Ck(x

1
k(u)− x0

k(u))

(12a)

s.t.
1

2

1∑
i=0

N∑
k=0

(
xi
k(u)

T
Qi

kx
i
l(u) + 2hi

k

T
xi
k(u) (12b)

+ui
k

T
Ri

ku
i
k + 2`ik

T
ui
k

)
≤ c.
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Fig. 2: The dual function, D(λ), corresponding to the system
from Example 1, with c̃ = 4. Here, the optimal dual solution
λ∗ is strictly feasible, and so Lemma 1 in the Appendix
implies that the optimal signaler strategy is unique.

The reformulated quadratic cost constraint, (12b), holds
because we assumed that P(b = 0) = P(b = 1) = 1

2 .
The assumptions Ri

k � 0 and Qi
k � 0 imply that (12) is a

quadratic optimization with a single, strictly convex quadratic
constraint. Thus, (12) is equivalent to a problem of the form

min
u

uTP0u+ 2bT0u+ c0 (13a)

s.t. uTP1u+ 2bT1u+ c1 ≤ 0, (13b)

where P1 is positive definite. Since it is assumed that (3) is
strictly feasible, the reformulated constraint (13b) is assumed
to be strictly feasible as well.

The Lagrangian of (13) is

L(u, λ) = uT(P0+λP1)u+2(b0+λb1)
Tu+c0+λc1 (14)

and the corresponding dual problem is

max
λ≥0

− (b0 + λb1)
T(P0 + λP1)

+(b0 + λb1) + c0 + λc1

(15a)
s.t. P0 + λP1 � 0 (15b)

(b0 + λb1) ∈ im(P0 + λP1) (15c)

Note that the maximin problem from (9) is equivalent to
the maximin problem used to compute the Lagrange dual:

max
λ≥0

min
u

L(u, λ) = max
λ≥0

D(λ). (16)

Lemma 1 in the Appendix implies that (15) is a strong
dual of (13), and so u∗ is optimal for (13) if and only if
there is there is value λ∗ ≥ 0 such that (u∗, λ∗) are optimal
for the maximin problem (16). The proof of the theorem is
complete, since (16) is equivalent to the (9).

B. Computing the Optimal Signaling Strategy

Now, a procedure for solving the maximin problem in
(9) will be described. For each value of λ ≥ 0, the inner
minimization of (9) is a linear quadratic regulator problem
with optimal value given by D(λ), the dual function from
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(a) Signaler Strategies
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λ
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(b) Dual Function

Fig. 3: 3a. This figure depicts the optimal signaling strategy
for the problem defined in (17), as applied to the system
from Example 1. In this case, c̃ = 0.4, and the probability
that the observer identifies the correct target is 0.68. 3b To
find the optimal signaler strategy, the dual function, D(λ), is
maximized. In this case, the dual optimum occurs at λ∗ > 0,
so the optimal signaler strategy is unique.

(16). (Below some value, λ < λl, the regulator problem is
unbounded below and so D(λ) = −∞.)

Since D(λ) is a Lagrangian dual function, it is a concave.
Furthermore, since λ is a scalar, it can be efficiently maxi-
mized numerically. Furthermore, if a maximizing solution,
λ∗, is found with λ∗ > λl, then the signaling strategy,
u∗, computed from the corresponding regulator problem is
unique. See Fig. 2.

IV. VARIATIONS AND EXTENSIONS

A. Ambiguous Optimal Control

So far, the signaler’s objective has been to increase the
observer’s decision accuracy, while maintaining a control
performance specified in (3). Say, instead, that the signaler
intends to decrease decision accuracy. This scenario arises in
game settings, such as when a player disguises the direction
that they throw a ball. This scenario of “ambiguous optimal
control” can be modeled by changing the objective in the
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original problem, (5), to a maximin problem:

max
f

min
u

P(f(z) = b) (17a)

subject to Constraints (5b), (5c), and (5d) (17b)

In this new formulation, the arguments from Subsec-
tion III-A apply, with the only change being that the objective
from (12a) will have a positive sign instead of a negative
sign. Thus, the following theorem holds.

Theorem 2: An optimal observer strategy is given by
maximum likelihood decisions, (8).

A signaler strategy, u∗, is optimal for (17) if and only if
it is optimal for the following maximin problem:

max
λ≥0

min
u

∑N
k=0(x

1
k − x0

k)
TCT

kΣ
−1
k Ck(x

1
k − x0

k)

+λ
2

∑1
i=0

∑N
k=0

(
xi
k
T
Qi

kx
i
l + 2hi

k
T
xi
k

+ui
k
T
Ri

ku
i
k + 2`ik

T
ui
k

)
− λc.

(18a)

s.t. xi
k+1 = Ai

kx
i
k +Bi

ku
i
k + gk, i = 0, 1 (18b)

xi
0 = x̂, i = 0, 1. (18c)

Note that for any λ > 0, the inner minimization in (18)
is a strictly convex linear quadratic regulator problem. As
discussed in Subsection III-A, the value of the inner mini-
mization for fixed λ is the dual objective of a minimization
problem, D(λ). So, as before, the optimal signaler strategy
can be computed by maximizing D(λ), which is concave.
If the optimal dual solution occurs with λ∗ > 0, then the
optimal signaler solution u∗ is unique. See Fig. 3.

B. Nonlinear Systems

The theory can also be used to find approximate signaling
strategies by applying Theorem 1 or 2 to a linear-quadratic
approximation. Say that the nonlinear dynamics are given by

xi
k+1 = F (xi

k, u
i
k), xi

0 = x̂, (19)

for i = 0, 1, and the trajectory constraint is given by

1

2

1∑
i=0

N∑
k=0

(
qk(x

i
k) + rk(u

i
k)
)
≤ c. (20)

Consider noisy measurements given by

zk = Hk(x
b
k) + wk = ybk + wk, (21)

where wk are independent zero mean Gaussians with covari-
ance Σk.

As in the linear case, if the observer knows y0 and y1,
it has an optimal strategy based on maximum likelihood
decisions, (8). Using arguments from detection theory, as in
the linear case, it can be shown that P(f∗(z) = b) increases
monotonically with

N∑
k=0

(Hk(x
1
k)−Hk(x

0
k))

TΣ−1
k (Hk(x

1
k)−Hk(x

0
k)). (22)

Approximately optimal solutions for the signaler can be
computed by successively finding linear approximations to
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(a) Locally Optimal Reaches
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Fig. 4: Trajectories of a three-link arm model. There are
two possible targets, represented by red ∗ marks. The dotted
lines depict the trajectories of the link tips. In the no
signaling case, 4a, the trajectories are a local minimum of
the movement cost, (20). In 4b, the signaler attempts to
maximize the decision accuracy and the trajectories exhibit
“wrist-pointing” phenomena observed in experiments. In 4c,
the movements are deceptive.
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the dynamics, (19) and quadratic approximations to (20) and
(22), and then solving either (9) or (18). See [18].

Example 2: Fig. 4 shows the result of the algorithm as ap-
plied to reaching movements of three-link arm. This problem
is designed to model qualitative features of an experiment
from [8]. In this experiment, a leader and follower coordinate
arm movements to grasp bars at either a high or low targets.
Only the leader receives a cue about the desired target. In
experiments, the leaders modulated the height of their wrists
during movements to provide information to followers about
the target. These features are captured by the differences in
the third joint in Fig. 4

The states of the nonlinear system are given by joint angles
and angular velocities: xT =

[
θ1 θ2 θ3 θ̇1 θ̇2 θ̇3

]T
For cleaner notation, the time indices k and target indices i
will be dropped in the description of the system.

The observer noisily measures the link tip locations:

y1 = `1

[
cos(θ1)
sin(θ2)

]
, y2 = y1 + `2

[
cos(θ1 + θ2)
sin(θ1 + θ2)

]
y2 = y3 + `3

[
cos(θ1 + θ2 + θ3)
sin(θ1 + θ2 + θ3)

]
Inputs are given by torques applied at the joints. The

other external torques on the joints are due to gravity and
viscous damping. Continuous-time equations of motion are
computed by the Euler-Lagrange equations, [21]. Discrete-
time equations of the form in (19) are computed using a first-
order Euler approximation of the Euler-Lagrange equations.

The movement cost bound is of the form

1

2

(
N∑

k=0

α‖ui
k‖2 + β‖yiN,3 − τ i‖2

)
≤ c,

where τ i are spatial targets and yiN,3 are the Cartesian
coordinates of the third link tip at the final time.

V. CONCLUSION

This paper presented a two-player problem in which one
player balances control costs with signaling strength. This
two-person problem was reduced to an equivalent max-
imin problem, which can be solved by iterating over linear
quadratic regulator problems. An approximation scheme for
nonlinear control problems was also sketched. When applied
to an arm model, the method produced qualitative phenom-
ena observed in human experiments.
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APPENDIX

The following lemma is required for the duality arguments
of this paper. It specializes the results of Appendix B [22]
to the case that P1 � 0. The proof is omitted for space
purposes.

Lemma 1: The following hold
1) There is zero duality gap between (13) and (15).
2) The optimal value of (13) is finite.
3) If λ is dual feasible, then all λ̂ > λ are also dual

feasible, and the corresponding primal minimizer, û,
is uniquely defined by

argmin
u

L(λ̂, u) = −(P0 + λ̂P1)
−1(b0 + λ̂b1) (23)

1116

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 15,2023 at 04:50:20 UTC from IEEE Xplore.  Restrictions apply. 


