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Abstract—Online control design using a high-fidelity, full-order
model for a bipedal robot can be challenging due to the size of
the state space of the model. A commonly adopted solution to
overcome this challenge is to approximate the full-order model
(anchor) with a simplified, reduced-order model (template), while
performing control synthesis. Unfortunately it is challenging to
make formal guarantees about the safety of an anchor model using
a controller designed in an online fashion using a template model.
To address this problem, this paper proposes a method to generate
safety-preserving controllers for anchor models by performing
reachability analysis on template models while bounding the
modeling error. This paper describes how this reachable set can be
incorporated into a Model Predictive Control framework to select
controllers that result in safe walking on the anchor model in an
online fashion. The method is illustrated on a 5-link RABBIT
model, and is shown to allow the robot to walk safely while
utilizing controllers designed in an online fashion.

Index Terms—Bipeds, underactuated system, safety guarantee.

I. Introduction

Legged robots are an ideal system to perform locomotion
on unstructured terrains. Unfortunately designing controllers
for legged systems to operate safely in such situations has
proven challenging. To robustly traverse such environments,
an ideal control synthesis technique for legged robotic systems
should satisfy several requirements. First, since sensors perceive
the world with a limited horizon, any algorithm for control
synthesis should operate in real-time. Second, since modeling
contact can be challenging, any control synthesis technique
should be able to accommodate model uncertainty. Third,
since the most appropriate controller may be a function of
the environment and given task, a control synthesis algorithm
should optimize over as rich a family of control inputs at
run-time as possible. Finally, since falling can be costly both
in time and expense, a control synthesis technique should be
able to guarantee the satisfactory behavior of any constructed
controller. As illustrated in Fig. 1, this paper presents an
optimization-based algorithm to design gaits for legged robotic
systems while satisfying each of these requirements.
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Fig. 1: This paper proposes a method to design gaits that are certified to
be tracked by a full-order robot model (bottom row sub-figures) for N-steps
without falling over. To construct this method, this paper defines a set of outputs
that are functions of the state of the robot and a chosen gait (middle row
sub-figures). If the outputs associated with a particular gait satisfy a set of
inequality constraints (depicted as the safe region drawn in light gray in the
middle row sub-figures), then the gait is proven to be safely tracked by the
legged system without falling. Due to the high-dimensionality of the robot’s
dynamics, forward propagating these outputs via the robot’s dynamics for N-
steps to design a gait that is certified to be tracked safely is intractable. To
address this challenge, this paper constructs a template model (top row sub-
figures) whose outputs are sufficient to predict the behavior of the anchor’s
outputs. In particular, if all of the points in a bounded neighborhood of the
forward reachable set of the outputs of the template model remain within the
safe region, then the anchor is certified to behave safely. This paper illustrates
how this can be incorporated into a MPC framework to design safe gaits in
real-time.

We begin by summarizing related work with an emphasis on
techniques that are able to make guarantees on the safety of
the designed controller. For instance, the Zero-Moment Point
approach [1] characterizes the stability of a legged robot with
planar feet by defining the notion of the Zero-Moment Point
and requiring that it remains within the robot’s base of support.
Though this requirement can be used to design a controller
that can avoid falling at run-time, the gaits designed by the
ZMP approach are static and energetically expensive [2], [3,
Section 10.8].

In contrast, the Hybrid Zero Dynamics approach, which
relies upon feedback linearization to drive the actuated degrees
of freedom of a robot towards a lower dimensional manifold,
is able to synthesize a controller which generates gaits that
are more dynamic. Though this approach can generate safety
preserving controllers for legged systems in real-time in the
presence of model uncertainty [4]–[8], it is only able to
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prove that the gait associated with a synthesized control is
locally stable. As a result, it is non-trivial to switch between
multiple constructed controllers while preserving any safety
guarantee. Recent work has extended the ability of the hybrid
zero dynamic approach beyond a single neighborhood of any
synthesized gait [9]–[12]. These extensions either assume full-
actuation [11] or ignore the behavior of the legged system off

the lower dimensional manifold [9], [10], [12].
Rather than designing controllers for legged systems, other

techniques have focused on characterizing the limits of safe per-
formance by using Sums-of-Squares (SOS) optimization [13].
These approaches use semi-definite programming to identify
the limits of safety in the state space of a system as well as
associated controllers for hybrid systems [14], [15]. These safe
sets can take the form of reachable sets [15], [16] or invariant
sets in state space [14], [17], [18]. However, the representation
of each of these sets in state space restricts the size of the
problem that can be tackled by these approaches and as a
result, these SOS-based approaches have been primarily applied
to reduced models of walking robots: ranging from spring
mass models [19], to inverted pendulum models [16], [20] and
to inverted pendulum models with an offset torso mass [18].
Unfortunately the differences between these simple models and
real robots makes it challenging to extend the safety guarantees
to more realistic real-world models.

This paper addresses the shortcomings of prior work by
making the following four contributions. First, in Section III-A,
we describe a set of outputs that are functions of the state of
the robot, which can be used to determine whether a particular
gait can be safely tracked by a legged system without falling. In
particular, if a particular gait’s outputs satisfy a set of inequality
constraints that we define, then we show that the gait can be
safely tracked by the legged system without falling. To design
gaits over N-steps that do not fall over, one could begin by
forward propagating these outputs via the robot’s dynamics
for N-steps. Unfortunately performing this computation can
be intractable due to the high-dimensionality of the robot’s
dynamics. To address this challenge, our second contribution,
in Section III-B, leverages the anchor and template framework
to construct a simple model (template) whose outputs are
sufficient to predict the behavior of the full model’s (anchor’s)
outputs [21]. Third, in Section IV-A, we develop an offline
method to compute a gait parameterized forward reachable set
that describes the evolution of the outputs of the simple model.

Similar to recently developed work on motion planning for
ground and aerial vehicles [22]–[25], one can then require that
all possible outputs in the forward reachable set satisfy the set
of inequality constraints that we define that guarantee that the
robot does not fall over during the N-steps. Unfortunately this
type of set inclusion constraint can be challenging to enforce at
run-time. Finally, in Sections IV-B and V, we describe how to
incorporate this set-inclusion constraint as a set of inequality
constraints in a Model Predictive Control (MPC) framework
that are sufficient to ensure N-step walking that does not fall
over. Note, to simplify exposition, this paper focuses on an

example implementation on a 14-dimensional model of the
robot RABBIT that is described in Section II. The remainder of
this paper is organized as follows. Section VI demonstrates the
performance of the proposed approach on a walking example
and Section VII concludes the paper.

II. Preliminaries
This section introduces the notation, the dynamic model of

the RABBIT robot, and a Simplified Biped Model (SBM) that
is used throughout the remainder of this paper. The following
notation is adopted in this manuscript. All sets are denoted
using calligraphic capital letters. Let R denote the set of real
numbers, and let N+ denote the collection of all non-negative
integers. Give a set A⊂ Rn for some n ∈N+, let C1(A) denote
the set of all differentiable continuous functions from A to R
whose derivative is continuous and let λA denote the Lebesgue
measure which is supported on A.

A. RABBIT Model (Anchor)
This paper considers the walking motion of a planar 5-link

model of RABBIT [26]. The walking motion of the RABBIT
model consists of alternating phases of single stance (one
leg in contact with the ground) and double stance (both legs
in contact with the ground). While in single stance, the leg
in contact with the ground is called the stance leg, and the
non-stance leg is called the swing leg. The double stance
phase is instantaneous. The configuration of the robot at time
t is q(t) := [qh(t),qv(t),q1(t),q2(t),q3(t),q4(t),q5(t)]> ∈ Q ⊂ R7,
where (qh(t),qv(t)) are Cartesian position of the robot hip; q1(t)
is the torso angle relative to the upright direction; q2(t) and q4(t)
are the hip angles relative to stance and swing leg, respectively;
and q3(t) and q5(t) are the knee angles. The joints (q2,q3,q4,q5)
are actuated, and q1 is an underactuated degree of freedom.
Let θ(q) := q1 + q2 + q3/2 denote the stance leg angle, and let
φ(q) := q1 + q4 + q5/2 denote the swing leg angle. We refer to
the configuration when the robot hip is right above the stance
foot, i.e. θ = π, as mid-stance. We refer to the motion between
the i-th and (i+1)-st swing leg foot touch down with the ground
as the i-th step.

Using the method of Lagrange, we can obtain a continuous
dynamic model of the robot during swing phase:

ȧ(t) = f (a(t),u(t)) (1)

where a(t) = [q>(t), q̇>(t)]> ∈ TQ ⊂ R14 denotes the tangent
bundle of Q, u(t) ∈ U, U describes the permitted inputs to
the system, and t denotes time. We model the RABBIT as
a hybrid system and describe the instantaneous change using
the notation of a guard and a reset map. That is, suppose
(θ(q(t)),cfoot(q(t))) denotes the stance leg angle and the vertical
position of the swing foot relative to the stance foot, respec-
tively, given a configuration q(t) at time t. The guard G is
{(b,b′) ∈ TQ | π/2< θ(b)< 3π/2,cfoot(b) = 0 and ċfoot(b,b′)< 0}.
Notice the force of the ground contact imposes a holonomic
constraint on stance foot position, which enables one to obtain
a reset map: [3, Section 3.4.2]:

q̇+(t) = ∆
(
q̇−(t)

)
, (2)



where ∆ describes the relationship between the pre-impact and
post impact velocities. More details about the definition and
derivation of this hybrid model can be found in [3, Section 3.4].

To simplify exposition, this paper at run-time optimizes over
a family of reference gaits that are characterized by their aver-
age velocity and step length. These reference gaits are described
by a vector of control parameters P(i) =

(
p1(i), p2(i)

)
∈P for all

i ∈ N, where p1(i) denotes the average horizontal velocity and
p2(i) denotes the step length between the i-th and (i+1)-st mid-
stance position. Note P is compact. These reference gaits are
generated by solving a finite family of nonlinear optimization
problems using FROST in which we incorporate p1(i), p2(i),
and periodicity as constraints, and minimize the average torque
squared over the gait period [27]. Each of these problems yields
a reference trajectory parameterized by P(i) and interpolation
is applied over these generated gaits to generate a continuum
of gaits. Given a control parameter, a control input into the
RABBIT model is generated by tracking the corresponding
reference trajectories using a classical PD controller.

Next, we define a solution to the hybrid model as a pair (I,a),
where I = {Ii}

N
i=0 is a hybrid time set with Ii being intervals

in R, and a = {ai(·)}Ni=0 is a finite sequence of functions with
each element ai(·) : Ii → TQ satisfying the dynamics (1) over
Ii where N ∈ N [28, Definitions 3.3, 3.4, 3.5]. Denote each
Ii := [τ+

i , τ
−
i+1] for all i < N. τi corresponds to the time of the

transition between (i−1)-th to i-th step. We let τ−i correspond to
the time just before the transition and and τ+

i correspond to the
time just after the transition. Since transitions are assumed to be
instantaneous, τi = τ−i = τ+

i if all values exist. When a transition
never happens during the i-th step, we denote τ−i−1 = +∞. Note
when τi+1 <∞, ai(τ−i+1) ∈ G and ai+1(τ+

i+1) ∈ ∆(ai(τ−i+1)).

B. Simplified Biped Model (Template)

As we show in Section VI, performing online optimization
with the full RABBIT model is intractable due to the size of its
state space. In contrast, performing online optimization with the
Simplified Biped Model (SBM) adopted from [29] is tractable.
This model consists of a point-mass M and two mass-less legs
each with a constant length l. The configuration of the SBM at
time t is described by the stance leg angle, θ̂, and the swing leg
angle, φ̂. The input into the model is the step length size and the
guard is the set of configurations when θ̂+ φ̂ = 2π. The swing
leg swings immediately to a specified step length. During the
swing phase, one can use the method of Lagrange to describe
the evolution of the configuration as a function of the current
configuration and the input. Subsequent to the instantaneous
double stance phase, an impact with the ground happens with
a coefficient of restitution of 0. We denote a hybrid execution
of the SBM as a pair (Î, â) where Î = {Îi}

N
i=0 is a hybrid time

set with Îi := [τ̂+
i , τ̂
−
i+1] and â = {âi(·)}Ni=0 is a finite sequence of

solutions to the SBM’s equations of motion.

III. Outputs to Describe SuccessfulWalking

During online optimization, we want to optimize over the
space of parameterized inputs while introducing a constraint
to guarantee that the robot does not fall over. This section

first formalizes what it means for the RABBIT model to walk
successfully without falling over. Unfortunately due to the
high-dimensionality of the RABBIT model, implementing this
definition directly as a constraint during online optimization is
intractable. To address this problem, in Section III-A defines
a set of outputs that are functions of the state of RABBIT
and proves that the value of these outputs can determine
whether RABBIT is able to walk successfully. Subsequently
in Section III-B we define a corresponding set of outputs that
are functions of the state of the SBM and illustrate how their
values can be used to determine whether RABBIT is able to
walk successfully.

To define successful walking on RABBIT, we begin by
defining the time during step i at which mid-stance occurs (i.e.,
the largest time t at which θ(q(t)) = π during Ii) as

tMS
i :=


+∞, if θ(q(t)) < π ∀t ∈ Ii,

−∞, if θ(q(t)) > π ∀t ∈ Ii,

max{t ∈ Ii | θ(q(t)) = π}, otherwise.
(3)

Note if mid-stance is never reached during step i, then the mid-
stance time is defined as plus or minus infinity depending upon
if the hip-angle remains less than π or greater than π during
step i, respectively. Using this definition, we formally define
successful walking for the RABBIT model as:

Definition 1. The RABBIT model walks successfully in step
i ∈ N if

1) tMS
i , ±∞,

2) π/2 < θ(q(t)) < 3π/2 for all t ∈ Ii, and
3) τ−i+1 < +∞.

To understand this definition, note that the first requirement
ensures that mid-stance is reached, the second requirement
ensures that the hip remains above the ground, and the final
requirement ensures that the swing leg actually makes contact
with the ground. Though satisfying this definition ensures that
RABBIT takes a step, enforcing this condition directly during
optimization can be cumbersome due to the high dimensionality
of the RABBIT dynamics.

A. Outputs to Describe Successful RABBIT Walking

This subsection defines a set of discrete outputs that are
functions of the state of RABBIT model and illustrates how
they can be used to predict failure. We begin by defining
another time variable t0

i :

t0
i :=


τ+

i , if θ̇(q(t), q̇(t)) < 0 ∀t ∈ Ii,

τ−i+1, if θ̇(q(t), q̇(t)) > 0 ∀t ∈ Ii,

max{t ∈ Ii | θ̇(q(t), q̇(t)) = 0}, otherwise.
(4)

Note t0
i is defined to be the last time in Ii when a sign change

of θ̇ occurs; when a sign change does not occur, t0
i is defined

as an endpoint of Ii associated with the sign of θ̇.
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Fig. 2: An illustration of how the values of the outputs can be used to determine
whether the robot walks safely. To ensure that the robot does not fall backwards,
one can require that y1(i) ≥ 0 (left column). In particular if y1(i) < 0, then
tMS
i = +∞ which implies that the robot is falling backwards. To ensure that the

robot does not fall forward, one can require that y2(i) ≤ π (right column).

We first define an output, y1 : N→ R that can be used to
ensure that tMS

i , +∞:

y1(i) :=


θ̇(q(tMS

i ), q̇(tMS
i )), if tMS

i , ±∞,

−

√
2g(lst(t0

i )−qv(t0
i ))/lst(t0

i ), if tMS
i = +∞,

1 if tMS
i = −∞,

(5)

where g is gravity and lst(t0
i ) is the stance leg length at time

t0
i . Note that y1(i) is the hip angular velocity when the mid-

stance position is reached during the i-th step. When the mid-
stance position is not reached, −y1(i) represents the additional
hip angular velocity needed to reach the mid-stance position.
In particular, notice tMS

i , +∞ whenever y1(i) ≥ 0 .
Next, we define an output y2 : N→ R that can be used to

ensure that tMS
i , −∞:

y2(i) :=

φ(q(τ−i+1)), if τ−i+1 < +∞,

2π, otherwise.
(6)

Note, y2(i) is the swing leg angle at touch-down at the end of
the i-th step; if touch-down does not occur, y2(i) is defined as
2π. Recall φ(q(τ−i+1)) = θ(q(τ+

i+1)), so if y2(i) ≤ π, it then follows
from (3) and (6) that tMS

i+1 ,−∞ and τ−i+1 <+∞. Fig. 2 illustrates
the behavior of y1 and y2.

We now define our last two outputs y3,y4 :N→R∪{−∞,+∞}
that can be used to ensure that the hip stays above the ground:

y3(i) :=

inf{θ(q(t)) | t ∈ [tMS
i , tMS

i+1 ]}, if tMS
i+1 , t

MS
i ∈ R,

−∞, otherwise.
(7)

y4(i) :=

sup{θ(q(t)) | t ∈ [tMS
i , tMS

i+1 ]}, if tMS
i+1 , t

MS
i ∈ R,

+∞, otherwise.
(8)

Finally, we let Y := R×R× (R∪{−∞,+∞})× (R∪{−∞,+∞}).
Using these definitions, we can prove the following theorem
that constructs a sufficient condition to ensure successful walk-
ing by RABBIT.

Theorem 2. Suppose that the 0-th step can be successfully
completed (i.e. τ+

0 and tMS
0 are finite, inf{θ(q(t)) | t ∈ [τ+

0 , t
MS
0 ]}>

π/2, and sup{θ(q(t)) | t ∈ [τ+
0 , t

MS
0 ]} < 3π/2)). Suppose y1(i) ≥

0, y2(i) ≤ π, y3(i) > π/2 and y4(i) < 3π/2 for each i ∈ {0, · · · ,N},
then the robot walks successfully at the i-th step for each i ∈
{0, · · · ,N}.

Proof: Notice y1(i) ≥ 0⇒ tMS
i , +∞ and y2(i) ≤ π⇒ tMS

i+1 ,
−∞ for each i ∈ {1, · · · ,N}. By induction we have tMS

i is finite
∀i ∈ {1, · · · ,N}. y2(i) ≤ π < 2π implies that τ−i+1 < +∞. By using
the definitions of y3 and y4, one has that the robot walks
successfully in the i-th step based on Definition 1.

B. Approximating Outputs Using the SBM

Finding an analytical expression describing the evolution
of each of the outputs can be challenging. Instead we define
corresponding outputs ŷ(i) :=

(
ŷ1(i), ŷ2(i), ŷ3(i), ŷ4(i)

)
∈ Y for

SBM. Importantly, the dynamics of each of these corresponding
outputs can be succinctly described.

As we did for the RABBIT model, consider the following
set of definitions for the SBM:

t̂MS
i :=


+∞, if θ̂(t) < π ∀t ∈ Îi,

−∞, if θ̂(t) > π ∀t ∈ Îi,

max{t ∈ Îi | θ̂(t) = π}, otherwise.
(9)

t̂0
i :=


τ̂+

i , if ˙̂θ(t) < 0 ∀t ∈ Îi,

τ̂−i+1, if ˙̂θ(t) > 0 ∀t ∈ Îi,

max{t ∈ Îi |
˙̂θ(t) = 0}, otherwise.

(10)

ŷ1(i) :=


˙̂θ(t̂MS

i ), if t̂MS
i , ±∞

−

√
2g(l(1 + cos(θ̂(t̂0

i ))))/l, if t̂MS
i = +∞

1 if t̂MS
i = −∞,

(11)

ŷ2(i) :=

φ̂(τ̂−i+1), if τ̂−i+1 < +∞,

2π, otherwise.
(12)

ŷ3(i) :=

inf{θ̂(t) | t ∈ [t̂MS
i , t̂MS

i+1 ]}, if t̂MS
i+1 , t̂

MS
i ∈ R,

−∞, otherwise.
(13)

ŷ4(i) :=

sup{θ̂(t) | t ∈ [t̂MS
i , t̂MS

i+1 ]}, if t̂MS
i+1 , t̂

MS
i ∈ R,

+∞, otherwise.
(14)

The discrete-time dynamics of each of these outputs of SBM
can be described by the following difference equations:

ŷ1(i + 1) = fŷ1

(
ŷ1(i),P(i)

)
ŷ2(i) = fŷ2

(
P(i)

)
ŷ3(i) = fŷ3

(
ŷ1(i),P(i)

)
ŷ4(i) = fŷ4

(
ŷ1(i),P(i)

) (15)

for each i ∈ N, ŷ(i) ∈ Y, and P(i) ∈ P. Such functions fŷ1 , fŷ2 ,
fŷ3 and fŷ4 can be generated using elementary mechanics 1.

1A derivation can be found at: https://github.com/pczhao/TA GaitDesign/
blob/master/SBM dynamics.pdf

https://github.com/pczhao/TA_GaitDesign/blob/master/SBM_dynamics.pdf
https://github.com/pczhao/TA_GaitDesign/blob/master/SBM_dynamics.pdf


To describe the gap between the discrete signals y and ŷ we
make the following assumption:

Assumption 3. For any sequence of control parame-
ters, {P(i)}i∈N , and corresponding sequences of outputs,
{y1(i),y2(i),y3(i),y4(i)}i∈N and {ŷ1(i), ŷ2(i), ŷ3(i), ŷ4(i)}i∈N, gener-
ated by the RABBIT dynamics and (15), respectively, there ex-
ists bounding functions B1, B1 :R×P→R, B2 :P×R×P→R,
and B3, B4 : R×P→ R satisfying

B1
(
y1(i),P(i)

)
≤ y1(i + 1)− ŷ1(i + 1) ≤ B1

(
y1(i),P(i)

)
(16)

y2(i)− ŷ2(i) ≤ B2
(
P(i−1),y1(i),P(i)

)
(17)

y3(i)− ŷ3(i) ≥ B3
(
y1(i),P(i)

)
(18)

y4(i)− ŷ4(i) ≤ B4
(
y1(i),P(i)

)
. (19)

In other words, if y1(i) = ŷ1(i), then B1, B1, B2, B3, and
B4 bound the maximum possible difference between (y1(i +

1),y2(i),y3(i),y4(i)) and (ŷ1(i + 1), ŷ2(i), ŷ3(i), ŷ4(i)). Though we
do not describe how to construct these bounding functions in
this paper due to space limitations, one could apply SOS opti-
mization to generate them [30]. To simplify further exposition,
we define the following:

B(y1(i),P(i)) := [ fŷ1

(
y1(i),P(i)

)
+ B1

(
y1(i),P(i)

)
,

fŷ1

(
y1(i),P(i)

)
+ B1

(
y1(i),P(i)

)
]

(20)

for all (y1(i),P(i)) ∈ R×P. In particular, it follows from (16)
that for any sequence of control parameters, {P(i)}i∈N , and
corresponding sequences of outputs, {y1(i)}i∈N generated by the
RABBIT dynamics that y1(i + 1) ∈ B

(
y1(i),P(i)

)
for all i ∈ N.

IV. Enforcing N-Step SafeWalking

This section proposes an online MPC framework to design a
controller for the RABBIT model that can ensure successful
walking for N-steps. In fact, when N = 1 one can directly
apply Theorem 2 and Assumption 3 to generate the following
inequality constraints over y1(i), P(i−1) and P(i) to guarantee
walking successfully from the i-th to the (i + 1)-th mid-stance:

fŷ1

(
y1(i),P(i)

)
+ B1

(
y1(i),P(i)

)
≥ 0, (21)

fŷ2

(
P(i)

)
+ B2

(
P(i−1),y1(i),P(i)

)
≤ π, (22)

fŷ3

(
y1(i),P(i)

)
+ B3

(
y1(i),P(i)

)
> π/2, (23)

fŷ4

(
y1(i),P(i)

)
+ B4

(
y1(i),P(i)

)
< 3π/2. (24)

Unfortunately, to construct a similar set of constraints when
N > 1, one has to either compute (y1(i),y2(i),y3(i),y4(i)) for each
i ≤ N, which can be computationally taxing, or one can apply
(16) recursively to generate an outer approximation to y1(i)
for each i ≤ N and then apply the remainder of Assumption 3
to generate an outer approximation to y2(i),y3(i), and y4(i) for
each i ≤ N. In the latter instance, one would need the entire
set of possible values for the outputs to satisfy the bounds
described in (21), (22), (23), and (24) to ensure N-step safe
walking. This requires introducing a set inclusion constraint
that can be cumbersome to enforce at run-time. To address
these challenges, Section IV-A describes how to compute in an
offline fashion, an N-step Forward Reachable Set (FRS) that

captures all possible outcomes for the outputs from a given
initial state and set of control parameters for up to N steps.
Subsequently, Section IV-B illustrates how to impose the set
inclusion constraints as inequality constraints.

A. Forward Reachable Set

Letting Y1 ⊂R be compact, we define the N-step FRS of the
output:

Definition 4. The N-step FRS of the output beginning from(
y1(i),P(i)

)
∈ Y1×P for i ∈ N and for N ∈ N is defined as

WN
(
y1(i),P(i)

)
:=

i+N⋃
n=i+1

{
y1(n) ∈ Y1 | ∃P(i + 1), . . . ,

P(n−1) ∈ P such that ∀ j ∈ {i, . . . , i + n−1},
y1( j + 1) is generated by the RABBIT

dynamics from y1( j) under P( j)
}

(25)

In other words, given a fixed output y1(i) and the current
control parameter P(i), the FRS WN captures all the outputs
y1( j) that can be reached within N steps, provided that all
subsequent control parameters are contained in a set P. The
following result follows from the previous definition:

Lemma 5.

WM
(
y1(i),P(i)

)
⊆WN

(
y1(i),P(i)

)
∀1 ≤ M ≤ N (26)

To compute an outer approximation of the FRS, one can
solve the following infinite-dimensional linear problem over the
space of functions:

inf
wN ,v1,··· ,vN

∫
Y1×P×Y1

wN(x1, x2, x3)dλY1×P×Y1 (FRSopt)

s.t. v1(x1, x2, x3) ≥ 0,
∀x3 ∈ B(x1, x2)
∀(x1, x2) ∈ Y1×P

vζ+1(x1, x2, x4) ≥ vζ(x1, x2, x3),
∀ζ ∈ {1,2, · · · ,N −1}
∀x4 ∈ B(x3, x5)
∀(x1, x2, x5) ∈ Y1×P×P

wN(x1, x2, x3) ≥ 0,
∀(x1, x2, x3) ∈ Y1×P×Y1

wN(x1, x2, x3) ≥ vζ(x1, x2, x3) + 1,
∀ζ = 1,2, · · · ,N
∀(x1, x2, x3) ∈ Y1×P×Y1

where the sets Y1 and P are given, and the infimum is taken
over an (N +1)-tuple of continuous functions (wN ,v1, · · · ,vN) ∈(
C1(Y1×P×Y1;R)

)N+1
. Note that only the SBM’s dynamics

appear in this program via B(·, ·).
Next, we prove that the FRS is contained in the 1-superlevel

set of all feasible w’s in (FRSopt):



Lemma 6. Let (wN ,v1, · · · ,vN) be feasible functions to
(FRSopt), then for all

(
y1(i),P(i)

)
∈ Y1×P

WN
(
y1(i),P(i)

)
⊆

{
x3 ∈ Y1 | wN

(
y1(i),P(i), x3

)
≥ 1

}
. (27)

Proof: Let (wN ,v1, · · · ,vN) be feasible functions to
(FRSopt). Substitute an arbitrary y1(i) ∈ Y1 and P(i) ∈ P into
x1 and x2, respectively. Suppose µ ∈WN

(
y(i),P(i)

)
, then there

exists a natural number n ∈ [i + 1, i + N] and a sequence of
control parameters P(i+1), · · · ,P(n−1) ∈P, such that y1( j+1) ∈
B
(
y1( j),P( j)

)
for all i ≤ j ≤ n−1 and µ = y1(n).

We prove the result by induction. Let x3 = y1(i + 1) ∈
B
(
y1(i),P(i)

)
. It then follows from the first constraint of

(FRSopt) that v1
(
y1(i),P(i),y1(i + 1)

)
≥ 0. Now, suppose

vζ
(
y1(i),P(i),y1(i + ζ)) ≥ 0 for some 1 < ζ ≤ n − i − 1. In

the second constraint of (FRSopt), let x3 = y1(i + ζ), x4 =

y1(i + ζ + 1) ∈ B
(
y1(i + ζ),P(i + ζ)

)
, and x5 = P(i + ζ) ∈

P′, then vζ+1
(
y1(i),P(i),y1(i + ζ + 1)

)
≥ 0. By induction, we

know vN
(
y1(i),P(i),y1(n)

)
≥ 0. Using the fourth constraint of

(FRSopt), let x3 = µ = y1(n), and we get wN
(
y1(i),P(i),µ

)
≥ 1.

Therefore µ ∈
{
x3 ∈ Y1 | wN

(
y1(i),P(i), x3

)
≥ 1

}
.

Though we do not describe it here due to space restrictions,
a feasible polynomial solution to (FRSopt) can be computed
offline by making compact approximation of Y1 and applying
Sums-of-Squares programming [31], [32].

B. Set Inclusion

To ensure safe walking through N-steps beginning at step i,
we require several set inclusions to be satisfied during online
optimization. First, we require that WN

(
y1(i),P(i)

)
⊆ [0,∞),

which ensures that (21) is satisfied. Since we cannot compute
WN

(
y1(i),P(i)

)
exactly we instead can require that the 1-

superlevel set of wN is a subset of [0,∞); however, this set
inclusion is difficult to enforce using MPC. Instead we utilize
the following theorem which follows as a result of the S -
procedure technique described in Section 2.6.3 of [33] and
Lemma 6:

Theorem 7. Let (wN ,v1, · · · ,vN) be feasible functions to
(FRSopt) and WN be as in Definition 4. Let s1, s2 :Y1 ×P×

Y1→R be functions that are non-negative everywhere. Suppose
` :Y1×P→ R satisfies the following inequality

s1(x1, x2, x3) · x3− `(x1, x2)+
−s2(x1, x2, x3) ·

(
wN(x1, x2, x3)−1

)
≥ 0 (28)

for every (x1, x2, x3) ∈ Y1 ×P×Y1. Then for any y ∈ Y1, and
P ∈ P, if `

(
y1,P

)
≥ 0, then WN

(
y1,P

)
⊆ [0,∞).

Given a feasible solution to (FRSopt), one can construct poly-
nomial functions s1, s2, and ` offline that satisfy Theorem 7
using Sums-of-Squares programming [31], [32].

Similarly we can utilize the following theorem to construct
polynomial functions offline that allow us to verify whether
safe N-step walking is feasible.

Theorem 8. For each ζ ∈ {1,2, · · · ,N −1}, suppose

1) sy2
ζ,1, s

y2
ζ,2 : P ×Y1 × P → R are functions that are non-

negative everywhere and there exist functions `y2
ζ :P×P→

R that satisfy the following inequality

sy2
ζ,1(x1, x2, x3) ·

(
π− fŷ2(x3)−B2(x1, x2, x3)

)
+

−sy2
ζ,2(x1, x2, x3) · x2− `

y2
ζ (x1, x3) ≥ 0, (29)

for every (x1, x2, x3) ∈ P × Y1 × P. Then for each ζ ∈
{1,2, . . . ,N − 1} and P,P′ ∈ P, if `y2

ζ

(
P,P′

)
≥ 0 and y1 ∈

[0,∞), then fŷ2

(
P′

)
+ B2

(
P,y1,P′

)
≤ π.

2) sy3
ζ,1, s

y3
ζ,2 :Y1 ×P→ R are functions that are non-negative

everywhere, ε is a small positive number, and there exist
functions `y3

ζ : P→ R that satisfy the following inequality

sy3
ζ,1(x1, x2) ·

(
fŷ3 (x1, x2) + B3(x1, x2)−π/2− ε

)
+

−sy3
ζ,2(x1, x2) · x1− `

y3
ζ (x2) ≥ 0 (30)

for every (x1, x2) ∈ Y1×P. Then for each ζ ∈ {1,2, . . . ,N−
1} and P ∈P, if `y3

ζ

(
P
)
≥ 0 and y1 ∈ [0,∞), then fŷ3

(
y1,P

)
+

B3
(
y1,P

)
> π/2.

3) sy4
ζ,1, s

y4
ζ,2 :Y1 ×P→ R are functions that are non-negative

everywhere, ε is a small positive number, and there exists
`

y4
ζ : P→ R that satisfy the following inequality

sy4
ζ,1(x1, x2) ·

(
3π/2− ε − fŷ4 (x1, x2)−B4(x1, x2)

)
+

−sy4
ζ,2(x1, x2) · x1− `

y4
ζ (x2) ≥ 0 (31)

for every (x1, x2) ∈ Y1×P. Then for each ζ ∈ {1,2, . . . ,N−
1} and P ∈ P, if `y4

ζ

(
P(i + ζ)

)
≥ 0 and y1 ∈ [0,∞), then

fŷ4

(
y1,P

)
+ B4

(
y1,P

)
< 3π/2.

One can construct polynomial functions `,`
y2
ζ , `

y3
ζ , and `

y4
ζ

offline that satisfy Theorem 7 using Sums-of-Squares pro-
gramming [31], [32]. As we describe next, these functions
allow us to represent the set inclusions conditions as inequality
constraints that are amenable to online optimization.

V. Model Predictive Control Problem

We use a MPC framework to select a gait parameter for
RABBIT by solving the following nonlinear program:

min
P(i)
...

P(i+N−1)

r (y(i),P(i),P(i + 1), · · · ,P(i + N −1)) (OL)

s.t. `
(
y1(i),P(i)

)
≥ 0,

fŷ2
(
P(i)

)
+ B2

(
P(i−1),y1(i),P(i)

)
≤ π,

fŷ3
(
y1(i),P(i)

)
+ B3

(
y1(i),P(i)

)
> π/2,

fŷ4
(
y1(i),P(i)

)
+ B4

(
y1(i),P(i)

)
< 3π/2,

`
y2
ζ

(
P(i + ζ −1),P(i + ζ)

)
≥ 0, ∀ζ = 1, · · · ,N −1,

`
y3
ζ

(
P(i + ζ)

)
≥ 0, ∀ζ = 1, · · · ,N −1,

`
y4
ζ

(
P(i + ζ)

)
≥ 0, ∀ζ = 1, · · · ,N −1,

P(i),P(i + 1), · · · ,P(i + N −1) ∈ P

where r ∈ C1(Y×PN ;R) is any user specified cost function.
Notice that (OL) is solved at the i-th mid-stance and only the



optimal P(i) is applied to the RABBIT and the problem is then
solved again for the (i + 1)-st step. The constraints of (OL)
together with Theorems 7 and 8 lead to the following theorem:

Theorem 9. Suppose that RABBIT is at the i-th mid-stance,
then tracking the gait parameters associated with any feasible
solution to (OL) ensures that RABBIT can walk successfully for
the next N-steps.

VI. Results

We evaluate our method on 300 simulation trials in which
the robot is required to track a random desired speed. Our
MATLAB implementation of these pair of experiments can
be found at: https://github.com/pczhao/TA GaitDesign.git. In
both experiments we set N = 3. The space of control parameter
is restricted to be P = [0.25,2]× [0.15,0.7].

We compare our method with a naı̈ve method and the direct
method. The naı̈ve method uses the SBM model to design a
gait in an MPC framework. The direct method uses the full-
order dynamics of the RABBIT model to design a controller
by solving an optimal control problem via FROST [27]. To
simplify the comparison, each method performs optimization
by minimizing the difference between a user specified speed
and the speed of the model used during optimization.

To apply our method, we begin by using the commercial
solver MOSEK to compute an outer approximation to the
(FRSopt) and each of the the `-functions in (OL) on a machine
with 144 64-bit 2.40GHz Intel Xeon CPUs and 1 Terabyte
memory. Note bounding functions that satisfy Assumption 3 are
constructed through simulation and the ones used during our
implementation can be found in the aforementioned repository.

Fig. 3 illustrates the performance of the naı̈ve method and
the method proposed in this paper on a sample trial. Note in
particular that the gait generated by the naı̈ve method is unable
to be followed by the full-order RABBIT model. On the other
hand, as shown in Fig. 3, the method proposed in this paper is
able to generate a gait that can satisfy the safety requirements
described in Theorem 2. This results in a controller which can
track the synthesized gait without falling over.

Across all 300 trials the computation time of the naı̈ve
method is 0.01 seconds, the direct method is 93.12 seconds, and
the proposed method is 0.11 seconds. Moreover, the RABBIT
model falls 2% of the time with the naı̈ve method, but never
falls with the proposed method or the direct method.

VII. Conclusion

This paper develops a method to generate safety-preserving
controllers for full-order (anchor) models by performing reach-
ability analysis on simpler (template) models while bounding
the modeling error. The method is illustrated on a 5-link, 14-
dimenstional RABBIT model, and is shown to allow the robot
to walk safely while utilizing controllers designed in a real-time
fashion.

Though this method enables real-time motion planning, fu-
ture work will consider several extensions that will enable real-
world robotic control. First, a template and associated outputs

0

1

2

3

S
p
e
e
d
 (

m
/s

)

0

2

4

y
 (

ra
d
/s

)
1

 
y

 (
ra

d
)

2
 

2.5

3

3.5

0 5 10 15

Number of steps

Safe region

Safe region

Unsafe region

Unsafe region

Desired

Naїve method

Proposed method

Naїve method

Proposed method

Naїve method

Proposed method

Fig. 3: An illustration of the performance of the method proposed in this paper
(top) and the naı̈ve method (second from top). Note that the rapid change in
the desired speed (third from top) generates a gait which cannot be tracked by
just considering a SBM model without additional constraints. By ensuring that
the outputs satisfy the inequality constraints proposed in Theorem 2 (bottom
two sub-figures), the proposed method is able to safely track the synthesized
gaits. Note the naı̈ve method violates the y2 constraint proposed in Theorem 2
on Step 5.

need to be constructed for 3D motion. Second, no guarantee
is provided that the optimization problem (OL) solved at each
step in the MPC will return a feasible solution.
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