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Abstract— Observer design typically requires the observabil-
ity of the underlying system to guarantee asymptotic conver-
gence of errors. Unfortunately verifying the observability of
an underlying nonlinear system may be challenging. Moreover,
ensuring asymptotic convergence may be insufficient to certify
satisfaction of performance constraints in finite time. This paper
develops a method to design Luenberger-type observers for
nonlinear systems that guarantee the largest possible domain
of attraction for the state estimation error regardless of the
initialization of the system without requiring a priori certifica-
tion of observability. The observer design procedure is posed
as a two-step problem. In the the first step, the error dynamics
are abstractly represented as a linear equation on the space
of Radon measures. Thereafter, the problem of identifying the
largest set of initial errors that can be driven to within the user-
specified error target set in finite-time for all possible initial
states, and the corresponding observer gains, is formulated as
an infinite-dimensional linear program on measures. This opti-
mization problem is solved, using Lasserre’s relaxations via a
sequence of semidefinite programs with vanishing conservatism.
By post-processing the solution of step one, the set of gains that
maximize the size of tolerable initial errors is identified in step
two. Two examples are presented to demonstrate the feasibility
of the presented approach.

I. INTRODUCTION

Estimating the state of a system is critical to a variety of

control related tasks including feedback design, diagnostics,

and monitoring. Unfortunately, measuring the states of a sys-

tem can involve considerable engineering effort and cost, and

sometimes may be impossible. Observers serve to provide a

means to achieve this objective and their design has been an

active area of interest within the controls community.

The observers considered in the literature usually satisfy

several requirements. First, they are typically designed to

guarantee asymptotically stable error dynamics. Unfortu-

nately, finite-time convergence of the estimation error may be

more useful in most applications [1]–[4]. This has inspired

several recent papers that have proposed Luenberger-type

observers for linear and nonlinear systems [1], [5]–[7].

Second, the systems for which observers are designed are

usually presumed to satisfy some observability condition. In

the case of nonlinear systems, this often requires assuming

that the system is transformable to the observer canonical

form and sometimes even requires that the system be ob-

servable along the solution trajectory, or at the origin [8]–

[10]. This condition can be difficult to check in practice and
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thus results in an ad hoc application of the observer design

technique.

Third, observers are typically designed to have globally

convergent error dynamics. Though this is a desirable char-

acteristic, constructing such observers may not be possible

for every system. In practice, an observer that is locally

convergent is generally sufficient as long as one can explicitly

describe the neighborhood of initial observer states that

converge to the true state of the system regardless of its

true initial state.

The primary contribution of this paper is a proof-of-

feasibility in the form of an automated tool to design ob-

servers for nonlinear systems that rely on static output injec-

tion to reject disturbances and uncertainty. These numerically

synthesized observers satisfy the following characteristics:

(1) they do not presume the observability of the system or

the existence of a transformation that renders the system

observable; (2) they guarantee the finite-time behavior of

the error dynamics; and, (3) they find the largest possible

domain of attraction for the error dynamics.

In addition to specifying the dynamics of the system, to

utilize the approach presented in this paper, a user must

specify the domain of interest, a description of acceptable

performance of the observer, a time by which the observer

must attain the stated acceptable performance. The result

of the technique presented in this paper is a static output

injection gain and the largest set of initial observer states that

are provably able to converge to the user specified error state

in the specified time for all states of the system initialized

in the user-specified state space.

The presented approach relies on dividing the observer

design problem into two sub-problems. The first sub-problem

identifies the largest set of static gains for output injection

and associated initial states for the observer that are able to

be driven to a user specified error in finite time for all initial

states in the state space. The second sub-problem utilizes

this result to identify a single (or a set) static gain with the

largest set of initial observer states that drive the error to

within expected tolerances by the specified time.

To tractably solve each sub-problem, this paper first trans-

forms the dynamics of the nonlinear system and observer into

a linear system over the space of measures [11]. As a result,

each sub-problem can be posed as an infinite dimensional

linear program over the space of measures. In the instance of

polynomial or rational dynamics, the solution to this infinite

dimensional linear program can be found with vanishing

conservatism using a hierarchy of semidefinite programs.

This solution methodology is inspired by several recent

papers [12]–[15].
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The remainder of the paper is organized as follows:

Section II introduces the notation used in the remainder

of the paper. Section III formulates the first sub-problem

as an infinite-dimensional linear program on measures and

describes a sequence of the semidefinite programs with

vanishing conservatism to solve the first sub-problem; Sec-

tion IV presents a method to solve the second sub-problem;

Section V demonstrates the performance of the presented

approach on examples; and Section VI concludes the paper.

II. PRELIMINARIES

This section describes the class of systems under con-

sideration, form of the observer that is constructed, and

presents a conceptual formulation to address the observer

design problem.

A. Notation

The following notation is adopted in the remainder of the

text. Sets are italicized and capitalized. The set of continuous

functions on a compact set K are denoted by C(K). The ring

of polynomials in x is denoted by R[x], and the degree of a

polynomial is equal to the degree of its largest multinomial;

the degree of the multinomial xα, α ∈ N
n
≥0 is ∣α∣ = ∥α∥1;

and Rd[x] is the set of polynomials in x with maximum

degree d. The dual to C(K) is the set of Radon measures on

K, denoted as M(K), and the pairing of μ ∈ M(K) and

v ∈ C(K) is denoted:

⟨μ, v⟩ = ∫
K
v(x)dμ(x). (1)

We denote the non-negative Radon measures by M+(K).
The space of Radon probability measures on K is denoted

by P(K). If a measure ν ∈ M+(A×B) can be represented as

a product measure of η ∈M+(A) and ζ ∈M+(B), we write

ν = η ⊗ ζ. The Lebesgue measure on a set A is denoted by

λA. The support of a measure, μ, is identified as spt(μ).
For convenience, the interval [0, T ] is denoted by T , when

necessary.

B. Problem Formulation

We next formally describe the problem of interest. In this

paper we consider drift systems with observations of the

following form:

ẋ(t) = f(t, x(t))
y(t) = h(x(t))

(2)

where x(t) ∈X ⊂ R
n are the states of the system, f ∶ Rn →

R
n is the drift term of the unforced system, and h ∶ Rn → Y

is the transformation from the state to the output, y ∈ Y ⊂
R

m. To guarantee the uniqueness of solution trajectories, we

make the following assumption:

Assumption 1. f and h are Lipschitz continuous in x and
piece-wise continuous in t.

Note that though the dynamics of this system is known,

usually the initial condition of this system is unknown and

may start anywhere in X . As a result, we construct an

observer of the form:

˙̂x(t) =f(t, x̂(t)) + l(y(t) − ŷ(t)) ∶= f̃(t, x(t), x̂(t), l)
ŷ(t) =h(x̂(t)),

(3)

where x̂(t) ∈ X̂ ⊂ R
n and l ∈ L ⊂ R

n×m is a constant gain

that we design. The objective of this paper is to find a gain l
in (3) that results in the largest possible set of initial observer

states converging satisfactorily close to the true state of the

system in a finite amount of time, T , regardless of the true

initial state of the system.

To describe this objective explicitly, we first define the

state estimation error, e(t) ∶= x(t) − x̂(t) ∈ E, dynamics as:

ė(t) =f(t, x(t)) − f̃(t, x(t), x(t) − e(t), l)
∶= g(t, x(t), e(t), l).

(4)

Next, we define the augmented system as follows:

[ẋ(t)
ė(t)] = [

f(t, x(t))
g(t, x(t), e(t), l)] . (5)

With z(t) ∶= [x(t) e(t)]′ ∈ Z where Z ∶=X ×E, the above

equation can be written as:

ż(t) = φ(t, z(t), l). (6)

In addition, let ET ⊂ R
n correspond to a target state that

the user wishes to drive the estimation error into by time T
and let ZT ∶= X × ET be the target set in the augmented

state space. To formally state the objective of this paper, we

next define the set of gains and associated initial error states

that can be driven to ET by time T under the augmented

dynamics for all possible initial states of the system in

Equation (2):

X = {(e0, l) ∈ E ×L ∣ ∀x0 ∈X ∃z ∶ [0, T ] →X ×E

s.t ż(t) = φ(t, z(t), l) a.e. t ∈ [0, T ]

z(0) = (x0, e0), z(T ) ∈ ZT}. (7)

We refer to this set as the backwards reachable set of ET .

Given this definition, the objective of this paper is to compute

a gain as:

sup
l∈L

λE({e0 ∣ (e0, l) ∈ X}) (8)

In words, this optimization problem seeks to find the gain

which drives the largest set of initial error states to the

desired error target set for all possible initial states of the

system in Equation (2).

Our approach to solving this problem mirrors our prob-

lem formulation. That is, we first compute the backwards

reachable set of ET and then solve the optimization problem

in Equation (8) to find an optimal gain. To ensure that the

problem is well-posed, we make the following assumptions:

Assumption 2. X , E, ET , and L are compact subsets.

Remarks 3. Recall that we do not assume that the pair
(f, h) is locally (or globally) observable. If, for instance, the
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system is unobservable everywhere in the domain of interest,
the set X as defined in Eqn. (7), is empty and no feasible
gain exists; otherwise, the projection of X on the state-space
is a subset of the observable space.

C. Occupation Measures

This section describes how to compute the backwards

reachable set by transforming the nonlinear dynamics of

the system into the space of measures. The result of this

transformation is a linear description of the dynamics. To

formulate this transformation, this section introduces occu-

pation measure (refer to [12], [16] for more details).

Given an initial condition for the system in Equation (6),

z0, the occupation measure quantifies the amount of time

spent by an evaluated trajectory in any subset of the space.

The occupation measure μ(⋅ ∣ z0, l) is defined as:

μ(A ×B ×C ∣ z0, l) = ∫
T

0
IA×B×C(t, z, l ∣ z0, l)dt, (9)

for all Borel Sets A×B ×C ⊂ T ×Z ×L where IK(y) is the

indicator function on the set K that returns one if y ∈K and

zero otherwise. With the above definition of the occupation

measure, one can show:

⟨μ(⋅ ∣ z0, l), v⟩ = ⟨λT , v(t, z(t ∣ z0, l), l)⟩, (10)

for all v ∈ C(T ×Z ×L).
The occupation measure completely characterizes the so-

lution trajectory of the system resulting from an initial con-

dition. Since we are interested in the collective behavior of

a set of initial conditions, we define the average occupation

measure as:

μ(A ×B ×C) = ∫
Z×L

μ(A ×B ×C ∣ z0, l)dμ̄0, (11)

where μ̄0 ∈ M+(Z × L) is the un-normalized probability

distribution of initial conditions. The average occupation

measure of a set in T × Z × L is equal to the cumulative

time spent by all solution trajectories that begin in spt(μ̄0).
By applying the Fundamental Theorem of Calculus, one

can evaluate a test function v ∈ C1(T ×Z ×L) at time t = T
along a solution to Equation (6) as:

v(T, z(T ∣ z0, l), l) = v(0, z0, l) +∫
T

0
Lφv(t, z(t ∣ z0, l), l)dt,

(12)

where Lφ ∶ C1(T ×Z ×L) → C(T ×Z ×L) is defined as:

Lφv ∶=
∂v

∂z
⋅ φ + ∂v

∂t
, (13)

Using Equation (10), Equation (12) can be re-written as:

v(T, z(T ∣ z0, l), l) = v(0, z0, l)+

+ ∫
Z×L

Lφv dμ(t, z, l ∣ z0, l). (14)

Integrating Equation (14) with respect to μ̄0 and defining a

new measure μT ∈ M+(ZT ×L), as:

μT (A ×B) = ∫
Z×L

IA×B(x(T ∣ z0, l), l)dμ̄0, (15)

produces the following equality:

⟨δT ⊗ μT , v⟩ = ⟨δ0 ⊗ μ̄0, v⟩ + ⟨μ,Lφv⟩, (16)

where, with a slight abuse of notations, δt is used to denote

a Dirac measure situated at time t. Using adjoint notation,

Equation (16) can be written as:

δT ⊗ μT = δ0 ⊗ μ̄0 + L′
φμ. (17)

Equation (17) is a version of Liouville’s Equation, holds for

all test function v ∈ C1(T × Z × L), and summarizes the

visitation information of all trajectories that emanate from

spt(μ̄0) and terminate in spt(μT ).

III. COMPUTING FEASIBLE OBSERVER GAINS

This section describes how to formulate and solve for

the backwards reachable set defined in Equation (7) using

the occupation measures defined in the previous section. In

particular, our approach relies upon describing the evolution

of the augmented system in Equation (6) using a family

of measures (μ̄0, μT , μ) which satisfy Equation (16) while

optimizing for the μ̄0 with the largest possible support. As

we describe below this translates into an infinite dimensional

linear program over measures.

Recall that computing the backwards reachable set defined

in Equation (7) requires finding observer gains and associated

initializations for the observer state that ensure all possible

initial states of the system are satisfactorily estimated (i.e. the

estimation error converges to ET by time T ). In particular,

note that the choice of the gain and the initial state of the

observer cannot depend on the true state of the system since

that is not known a priori. This implies that the initial values

of the error and gain state should be independent of the

values of the initial system state. That is, μ̄0 is expressible

as a product measure of the form μ̄0 = μ0 ⊗ λX , where

μ0 ∈ M+(E ×L).

A. Convex Computation of Feasible Gains

The computation of X can be be posed as the solution to

an infinite dimensional Linear Program (LP) on measures:

sup
Λ

⟨μ0,1E×L⟩ (P )

st. λX ⊗ μ0 + L′
φμ = μT , (18)

μ0 + μ̂0 = λE×L, (19)

where Λ ∶= (μ0, μ̂0, μ, μT ) ∈ M+(E × L) ×M+(E × L) ×
M+(T ×Z×L)×M+(ZT×L) and 1E×L denotes the function

that takes value 1 everywhere on E×L. The following prop-

erty of (P ) can be derived using [12, Lemma 1, Theorem 1]:

Lemma 4. Let p∗ be the optimal value of (P ), then p∗ =
λE×L(X). Moreover, the supremum is attained with the μ0-
component of the optimal solution equal to the restriction of
the Lebesgue measure to the backwards reachable set X .
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The dual problem to (P ) is [17]:

inf
Ξ

⟨λel,w⟩ (D)

st. Lφv(t, z, l) ≤ 0 ∀(t, z, l) ∈ T ×Z ×L

w(e, l) ≥ 0 ∀(e, l) ∈ E ×L

w − ⟨λX , v(0, z, l)⟩ − 1 ≥ 0 ∀(e, l) ∈ E ×L

v(T, z, l) ≥ 0 ∀(z, l) ∈ ZT ×L

where Ξ ∶= (v,w) ∈ C1(T ×Z ×L) × C(E ×L). We use this

dual representation of the problem to identify the support

of the μ0-component of the optimal solution of (P ). To do

this, we first establish the equivalence between (P ) and (D)
using [12, Theorem 2]:

Lemma 5. There is no duality gap between problems (P )
and (D).

Feasible pairs to (D) have an interesting interpretation:

v is similar to a Lyapunov function for the system, and w
resembles an indicator function on spt(μ0), which follows

from the Fundamental Theorem of Calculus and the con-

straints of (D):
Lemma 6. Let (v,w) be a pair of feasible functions to (D).
The 1-super level set of w contains spt(μ0).

As a result, the 1-super level set of the w-component of

any feasible pair of functions to D is an outer approximation

to X . In fact, one can prove that the solution to (D) coincides

with X by using [12, Theorem 3]

Theorem 7. There is a sequence of feasible solutions to (D)
whose w component converges uniformly in the L1 norm to
the indicator function on X .

B. Solving (P ) via Semidefinite Programming

Problem (P ) is an infinite dimensional linear program

on measures, which is usually impossible to solve exactly.

This section introduces a convex relaxation hierarchy whose

solutions converge with vanishing conservatism to the true

solution to (P ). This sequence of relaxations is constructed

by characterizing each measure using a sequence of mo-

ments1 and assuming the following:

Assumption 8. f is a polynomial function and X,E,ET ,
and L are semi-algebraic sets.

We also make the following assumption on the semi-

algebraic sets to ensure that we can construct a Semidefinite

Programming (SDP) hierarchy (refer to [18, Theorem 2.15]):

Assumption 9. Each of the semi-algebraic sets X,E,ET ,
and L has at least one defining polynomial of the form R −
∥x∥22 for some constant R ≥ 0.

This assumption is made without loss of generality since

X,E,ET , and L is bounded and therefore this redundant

constraint can be added for a sufficiently large constant.

Under these assumption, given any finite d-degree trun-

cation of the moment sequence of all measures in (P ),
1The nth moment of a measure μ is yμ,n = ⟨μ,xn⟩.

a relaxation, (Pd), can be formulated over the moments

of measures to construct a SDP. The dual to (Pd), (Dd),
can be expressed as a Sums-of-Squares (SOS) program by

considering d-degree polynomials in place of the continuous

variables in D. In the interest of brevity of presentation, only

(Dd) is presented below. This decision is motivated by the

fact that solution to (Dd) can be used to identify the spt(μ0).
To formalize this dual program, first note that a polynomial

p ∈ R[x] is SOS or p ∈ SOS if it can be written as p(x) =
∑m

i=1 q
2
i (x) for a set of polynomials {qi}mi=1 ⊂ R[x]. Note

that efficient tools exist to check whether a finite dimensional

polynomial is SOS using SDPs [19]. To formulate this

problem, we make a few additional definitions. Suppose we

are given a semi-algebraic set A = {x ∈ Rn ∣ hi(x) ≥ 0, hi ∈
R[x],∀i ∈ Nm}, then define the d-degree quadratic module
of A as:

Qd(A) = {q ∈ Rd[x] ∣ ∃{sk}k∈{0,1,...,m}∪{0} ⊂ SOS s.t.

q = s0 + ∑
k∈{1,...,m}

hksk}

(20)

With this definition, the d-degree relaxation of the dual,

Dd, can be written as:

inf
Ξd

∫
E×L

wd(e, l)d(λel) (Dd)

st. wd ∈ Qd(E ×L) (21)

vd(T, z, l) ∈ Qd(ZT ×L) (22)

− Lφvd(t, z, l) ∈ Qd(T ×Z ×L) (23)

wd − ⟨λx, vd(0, z, l)⟩ − 1 ∈ Qd(E ×L) (24)

where Ξd = {(vd,wd) ∈ Rd[t, z, l] ×Rd[e, l]}. The solution

to this SDP can be used to generate an outer approximation to

X which converges to X as the relaxation degree increases:

Lemma 10. [12, Theorem 6] Let wd denote the w-
component of the solution to (Dd), then Xd = {(e0, l) ∈
E × L ∣ wd(e, l) ≥ 1} is an outer approximation of X and
limd→∞ λE×L(Xd/X) = 0.

Remark 1. The method described in this section generates
an outer approximation of X . In fact a similar approach can
be used to derive an inner approximation of X [20].

IV. CHOOSING THE OPTIMAL GAIN

This section presents a method to address the problem

presented in Equation (8) once X is computed using the

methods presented in the previous section. As a result of

Theorem 7, one can use the optimal w-component of the

solution to (D) to rewrite Equation (8) as:

l∗ ∈ argmax
l∈L

∫
E
w∗(e, l)de (25)

However, (D) cannot be solved directly. In this section, we

describe a method to utilize the w-component of (Dd) to

identify the set of optimal gains.
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The first step in using the d-degree optimal solution, w∗
d ,

in Equation (25) is to recognize that for each l ∈ L:

∫
E

wd(e, l)de ≥ ∫
{e∣wd(e,l)≥1}

wd(e, l)de ≥ ∫
E

w∗(e, l)de. (26)

As a result of Lemma 10, one can prove that the above

inequalities turn into equalities as d → ∞. For finite d,

however, it is necessary to approximate the last term in the

above equation, as tightly from above or below, as possible.

In this section, we present a state-space discretization to

evaluate the set-integration as defined by the second term

in Equation (26) efficiently, and also approximately solve

the resulting version of the problem in Equation (25).

Define β ∶ L→ R≥0 as:

β(l) =
⎛
⎝

n

∏
j

Δej
⎞
⎠

N1

∑
i1=1

⋯
Nn

∑
in=1

(min{1,wd(eI , l)})k (27)

where eI ∶= ei1,...,in is a point in the n-cuboid discretization

in each dimension, k ≫ 0, and Δej is the width of the

uniform grid in the jth coordinate. As proven next, the

function β converges uniformly to the evaluation of the

cost of the optimization problem in Equation (25), with w∗

replaced with wd:

Lemma 11. For each l ∈ L, β converges uniformly from
above to ∫E w∗(e, l)de as d→∞.

Proof. The proof is similar to that of [13, Lemma 12].

To choose the optimal gain, we fix a degree relaxation

and discretize the space of gains L and evaluate β for each

discretization. By maximizing β, one can select the optimal

gain.

V. EXAMPLES

This section provides three 2D numerical experiments.

Each SDP is prepared using a custom software toolbox and

the modeling tool YALMIP [21]. The programs are run with

the commercial solver MOSEK on a machine with 144 64-

bit 2.40GHz Intel Xeon CPUs and 1 Terabyte memory. The

end time in each example is set as T = 1, and the observer

gain l is restricted to L ∶= {l ∈ R2 ∣ 10−∥L∥2 ≥ 0}. The error

space is assumed to be E ∶= {e ∈ R2 ∣ 1 − ∥e∥2 ≥ 0}, and the

target error set is ET ∶= {e ∈ R2 ∣ 0.05− ∥e∥2 ≥ 0}. A degree

6 relaxation is used to solve the examples. For simplicity, we

say an observer gain l is admissible given initial condition

e0, if the estimation error is driven into ET at t = T by l for

all the initial condition x0 ∈X . Similarly an initial condition

e0 is feasible given observer gain l, if the estimation error

is driven into ET at t = T by l for all the initial condition

x0 ∈ X . While computing β as described in Equation (27),

k is set equal to 1000.

Fig. 1. An illustration of the computed optimal gains for static observer
design (the gray region) and the sampled ground truth optimal observer
gains (black dots) as described in Section V-A.

A. 2D Linear System

To validate the performance of our numerical method, we

begin by considering a two dimensional linear system:

ẋ1 = −x1 − 3x2 (28)

ẋ2 = −2x1 − 6x2 (29)

y = x1 (30)

where x ∈X ∶= {x ∈ R2 ∣ 1−∥x∥2 ≥ 0}. wd is first computed

using (Dd) and then β was computed using wd as depicted

in Figure 1. The optimal gains according to the method

proposed in this paper are all points belonging to the gray

region in Figure 1.

To verify the correctness of this computed region, the gain

space was uniformly sampled in polar coordinates with 2601
points. If all sampled initial errors in E could be driven

to ET for all sampled initial states, then this point was

depicted in black in Figure 1. These black points are the

sampled ground truth optimal gains. Notice that the gray

region which we compute using our proposed method is an

outer approximation to the set of ground truth optimal gains.

B. 2D Nonlinear System

Consider the following 2-dimensional nonlinear system:

ẋ1 = −x1 + x1x2 (31)

ẋ2 = −x2 (32)

y = x1 (33)

where x ∈ X ∶= {x ∈ R
2∣1 − ∥x∥2 ≥ 0}. The ground

truth admissible l is generated by sampling the entire space

of L with 1200 points under the uniform distribution in

polar coordinates. By varying the initial condition e0, the

admissible area of observer gains changes as shown in Figure

2. This means that there does not exist an l that works for

all e0.

However, an optimal statical observer gain lopt can be

obtained from wd based on Section IV, such that lopt works
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Fig. 2. An illustration of slices of the computed wd for the nonlinear

system described in Section V-B when e0 = [0.20.2
] (left) and when e0 =

[ 0.2−0.2] (right). The gray area inside L represents the 1-super level set of

wd. Dots, which are obtained by sampling, represent the sampled ground
truth admissible l in each slice.

for the largest set of initial errors e0 ∈ E. Figure 3 compares

the performance of this computed optimal gain to the best

gain, lsample we could find via sampling the entire state

space with 961 points using a uniform distribution in polar

coordinates and another arbitrary gain in L. The number

of feasible e0 for our computed lopt is only two less than

the number for lsample and it is significantly better than the

arbitrary selected gain.

Fig. 3. Bar chart depicting the number of admissible initial errors in E
for each associated gain. lsample (left) was generated by sampling, and lopt

(middle) was generated by our proposed method. The last gain was chosen
arbitrarily.

VI. CONCLUSION

This paper describe a convex optimization technique to

design an observer with static output injection for nonlinear

systems. By utilizing the notion of occupation measures, this

paper proposes a two-step methodology to synthesize the

gains that ensure the largest possible set of initial observer

states converge to a state estimate with a desired estimation

error in finite time regardless of the true initial state of the

system being observed. The first step optimizes over the

space of polynomials using SDPs to find an outer approxima-

tion to the set of gains and associated initial estimation errors

that have satisfactory estimation error. A similar framework

can be applied to find an inner approximation to the set

of adequate gains and initial error states. The second step

utilizes this set to select a gain that can drive the largest set

of initial estimation errors to a suitable estimation error in

finite time. The proposed method is validated numerically on

several examples of varying complexities.
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